EGC220
 Class Notes 2/17/2023

Baback Izadi
Division of Engineering Programs
bai@engr.newpaltz.edu

Basic Identities of Boolean Algebra

1. $X+0=X$
2. $x+1=1 \quad$ sub of $x+X=X$ products
3. $X \cdot 0=0$ product of
$7 X \bar{X}=\bar{X}=1$
4. $\bar{X}=X$
5. $X \cdot \bar{X}=0$
6. $X+Y=Y+X$
7. $X Y=Y X$

Commutative
12. $X+(Y \pm Z)=(X+Y)+Z$
13. $X(Y Z)=(X Y) Z$

150 $X+Y Z=(X+Y)(X+Z)$
16. $\overline{X+Y}=\bar{X} \cdot \bar{Y}$
17. $\bar{X} \cdot \bar{Y}=\bar{X}+\bar{Y}$ Associative
Distributive
DeMorgan's

1. Find he complement of $\mathrm{F}=\mathrm{XY}+\mathrm{Z}^{\prime}$. Then show that $\mathrm{FF}^{\prime}=0$ and $\mathrm{F}+\mathrm{F}^{\prime}=1$
$\bar{F}=\overline{x \nmid+\bar{z}}$
$=\overline{(x y)} \cdot \overline{\bar{z}}$

$$
=(\bar{x}+\bar{y}) z
$$

$$
\begin{aligned}
& B-D \frac{\overline{A B}}{\underset{N A N I}{ }} \underset{A}{ } \bar{A}+\bar{B} \quad A=2 \\
& \left.\hat{B} \Rightarrow a^{\overline{A+B}} \Leftrightarrow \bar{A} \bar{B} \quad \begin{array}{ll}
A-G \\
B-d
\end{array}\right] \\
& \frac{A}{\frac{A}{B}=D 0 t \overline{A \bar{B}}}
\end{aligned}
$$

$$
\begin{aligned}
& F=\pi M(0,2,3) \\
& F=\bar{x} \bar{y} z+x \bar{y}+x \bar{y}_{z}+x y^{2}+x y^{2} z \\
& \text { e. Standard yraduct of } 5 \text { mumb } \overline{\bar{y}} \overline{\bar{x}} \overline{\bar{y}} / z \\
& f=(x+y+z)(x+\bar{y}+z)(x+\bar{y}+\bar{z}) \\
& z \rightarrow \infty^{\vee} \\
& \begin{array}{l}
\bar{B}=D-B \\
A-D-D \\
B-D
\end{array}
\end{aligned}
$$

a. Using AND and OR gates, draw the logic diagrams for the following Boolean expressions without expanding or simplifying them.

$$
\begin{aligned}
& \text { i. } \mathrm{Y}=\left(\mathrm{A}^{\prime}+\mathrm{B}^{\prime}\right) \mathrm{C}+\mathrm{B}(\mathrm{~A}+\mathrm{C}) \\
& \text { ii. } \mathrm{G}=\left(\mathrm{A}+\mathrm{B}^{\prime}\right)\left(\mathrm{C}+\mathrm{D}^{\prime}\right)
\end{aligned}
$$

b. Convert the above circuits to all NAND and all NOR gates without expanding or simplifying the functions.

a. Using AND and OR gates, draw the logic diagrams for the following Boolean expressions without expanding or simplifying them $\mathrm{G}=\left(\mathrm{A}+\mathrm{B}^{\prime}\right)\left(\mathrm{C}+\mathrm{D}^{\prime}\right)$
b. Convert the above circuits to all NAND and all NOR gates without expanding or simplifying the functions.
a.

b. All NAN) S.O.P

h.

extrasimplify

$$
\begin{aligned}
& F= \underbrace{\bar{x} y z} \begin{array}{l}
x y z \\
x y y z+x y z \\
x y z
\end{array} \\
&=y z(\bar{x}+x)+x z(\bar{y}+y)+x y(\underbrace{z}+z) \\
& 1
\end{aligned}
$$

